Progresión geométrica

Progresión geométrica

Una progresión geométrica es una secuencia numérica definida por dos parámetros b , q (q ≠ 0) y la ley , ,

Número de llamado el denominador de una progresión geométrica dada.

  • Si q> 0, todos los términos de la progresión geométrica tienen el mismo signo, que coincide con el signo de b.
  • Si q <0, los signos de los términos de la progresión geométrica se alternan.
  • En el caso -1 progresión se llama progresión geométrica infinitamente decreciente .

Cualquier miembro de una progresión geométrica puede calcularse mediante la fórmula:

La fórmula para el denominador de una progresión geométrica:

La fórmula para la suma de los n-primeros términos de una progresión geométrica

donde, q ≠ 1

Una progresión geométrica infinitamente decreciente es una progresión en la cual | q | <1. Para ello, el concepto de suma de términos de una progresión geométrica infinitamente decreciente se define como un número al que la suma primeros miembros de la progresión bajo consideración con un aumento ilimitado en el número .

La fórmula para la suma de los términos de una progresión geométrica infinitamente decreciente:

donde, q ≠ 1

Ejemplo 1.

Dada una progresión geométrica de 2.6, 18, ... Encuentra el décimo miembro de la progresión y la suma de sus doce primeros miembros.

Ver también: progresión aritmética

You May Also Like

New Articles

Reader's Choice

© 2023 pomilm.com